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I will be talking about 

Prediction in  Ungauged Basins (PUB)

Treading space for time approach

Large sample hydrology with TSFT 

Catchment similarity for PUB 
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Hydrologic modeling is channeling in data scarce region

• Majority of the Basin/catchments in India are ungauged or the availability of the streamflow is not 
suitable for reliable streamflow projection [Kumar et al., 2018; Sivapalan et al., 2017]. 

• Climate change adding further projection uncertainty [Adler et al., 2003, Brohanetal 2006]
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Prediction in Ungauged Basins (PUB)

• Prediction in the ungauged basin is a paramount problem in water resource management as 
observed discharge is a key parameter of all the hydrological paradigm.

• PUB refers to estimating hydrological behaviors (streamflow and runoff), in river basins where 
direct measurements are unavailable. 

• Several approaches are produced in the predicting runoff in ungauged basin or provide a 
workaround [Sivapalan, M. (2003)]. 

• Problem still persist  due to lack of data availability, Regionalization & Transferability,  Modeling 
Complexities, Climate Change Impacts [Blöschl et al., 2013; Hrachowitz et al., 2013, Feng et al., 
2020]

Best practices for predictions in ungauged basins 
by Takeuchi et al. (2013) in Blöschl et al. (2013)
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Trading Space for Time (TSFT)

One of the recently established approaches is trading space for time [TSFT] . [Singh et.al, 2011 , 
Deshmukh and singh, 2016, 2019;].

Where we utilize large number of catchment information to overcome the low availability of other 
parameters or discharge data. 

Several climate scenario are used to explore the possible unprecedented changes in the future.

 

A trading-space-for-time approach to probabilistic continuous streamflow 
predictions in a changing climate—accounting for changing watershed behaviour.

Singh et.al, 2011 

Deshmukh and singh, 2019

Deshmukh and singh, 2016
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Large sample hydrology (LHS) transferable hydrological models 

- To deal with PUB problem we can leverages extensive datasets across a wide range of spatial and 
temporal scales to uncover patterns.

- improving regionalization techniques for ungauged basins.

- advancing hydrological models to handle climate change induced extreme events. [Vogel et al., 
2003, Addor et al., 2017]

Recently available vast number of discharge data and catchment attribute data (CAMELS) allow us to  
for testing the hypothesis on TSFT. 

Average flow 
condition

Low flow 
conditions

High flow 
conditions

Magnitude of flow events 46 22 27

Timing of flow events 03 03 03

Rate of change in flow events 09 00 00

Frequency of flow events 00 03 11

Duration of flow events 00 20 24

Olden, J. D., & Poff, N. L. (2003)
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Using LSH to determined the similarity in the catchment groups 

Recently availability vast number of discharge data and catchment attribute data (CAMELS) provides 
useful link to relate the catchments

It is helps for Indian catchment where a link can be generated between ungauged and gauged 
catchment based on similar grouping/ clusters of catchments. 

We provide a simple framework to assess the similarity in the catchments: 
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Study area and data 

CARAVAN1 give access of more then 
6000 catchments2. 

Caravan - A global community dataset 
for large-sample hydrology [Kratzert et 
al., 2024]

We select 4 country for this study and 
choose 50 catchment from each based 
on the catchment area size [500-
2500km2] 

___
1: Catchment Attributes and MEteorology for 
Large sample Studies

1: 482 CAMELS1 (US) , 150 CAMELS-AUS, 376 
CAMELS-BR, 314 CAMELS-CL, 408 CAMELS-GB, 
4621 HYSETS, 479 LamaH-CE
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Study area and data for analysis
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Methodology 

We select 4 country  (Australia, Chile, India, USA) for this study and choose 50 catchment from each 
based on the catchment area size [500-2500km2] 

Allow to find the similar catchment base on hydrologically similarity 

• Divide the catchments in characteristic into 3 groups Grouping PA, CA, HA

• Find spatial similarity based on clustering (elbow method: 5 clusters for all the grouping.)
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Hopkins statistic is used to find the cluster tendency of the data

• The Hopkins statistic is a way of measuring the cluster tendency of a data set. 
• Computed Hopkins statistic for random data 0.5. With the data we have it near 1  (Clusterable) [Hopking et al., 

1954]
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Cluster plot for CA and PA groups. 

The clustering of the CA and PA grouping is shown in the figure. An ideal number of clusters (n = 5) are found using 
gap statistics and elbow method.
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Evaluate cluster with variable gourping

• Internal similarity criteria: to attain high intra-cluster and low inter-cluster similarity.
• External criteria of clustering quality: 

• Rand Index
• Purity
• F-measure 
• Normalize Mutual Information (NMI)

Normalize Mutual Information: NMI compares how much 
information random variables (Cluster Vectors) share.

Entropy in information theory is a measure of uncertainty 
or randomness in a set of data.

I: is mutual information
H: is entropy

Image Source: https://www.pngaaa.com/download/1559450 

https://www.pngaaa.com/download/1559450
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Normalized mutual information and correlation between CA, PA, and HI.

Several combination of CA PA HI will be created and optimize with highest NMI values. One of set is 
show in the table below.

We can conclude with the above table that CA and HI grouping 25% explains each other, similarly, this number 
is 40% for PA and HI grouping. We found strong location bias in the clustering
of the catchment.
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Thank you! 
Questions?
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